

LAB FOR MEASUREMENT TECHNOLOGY Prof. Dr. rer. nat. A. Schütze

COST Action TD1105 – EuNetAir WG Meeting: New Sensing Technologies and Methods for Air-Pollution Monitoring

Gas Sensor Systems for Indoor Air Quality Monitoring

European Environment Agency, Oct. 3 – 4, 2013, Copenhagen

Andreas Schütze Saarland University, Lab for Measurement Technology

- Introduction: indoor applications and air quality
- Gas measurement systems more than just sensors
 - The three "S"
 - Gas measurement systems
 - Signal processing and evaluation
 - Calibration and field testing
- Indoor Air Quality monitoring
 - Target gases and concentrations
 - Potential sensor solutions
- Novel developments
 - Novel sensors: versatile GasFETs
 - System self monitoring
 - Multifunctional multisensor systems
- Conclusions

3

Why worry about indoor air?

- Safety
 - Gas leak detection (combustible gases, e.g. CH₄)
 - Fire detection (various gases)
 - Hazardous gas detection (e.g. CO)
- Malodor detection (kitchen & bathroom ventilation)
- HVAC systems
 - Reduced air circulation for greatly reduced energy consumption
 CO₂ monitoring for fresh air
 - Increased levels of VOCs lead to sick building syndrome
 - Selective (formaldehyde, benzene etc.) and sensitive (ppb level) detection
 - Systems have to be adapted to the specific room use scenario

Sensor requirements

- Low cost
- Networked systems (in major buildings, but also private homes)
- Long lifetime: >10 years without maintenance for private homes
 Which sensors are used today?
 - Safety
 - Gas leak detection: pellistors (ind.), human nose (in Japan: MOS)
 - Fire detection: various sensors, mostly optical; gas sensor systems under development (EC, MOS, GasFET)
 - Hazardous gas detection: EC, MOS
 - Malodor detection: MOS
 - HVAC systems
 - CO₂ monitoring: NDIR (in major rooms/buildings), EC, GasFET
 - VOCs: MOS (total VOC), GasFET (emerging)

5

The three "S"

- Sensitivity
 - Broad spectrum from ppb (for malodors, ozone, hazardous VOCs) up to 1000 ppm (gas leak, CO₂)
- Selectivity
 - False alarms are primary concern for fire detection (ratio 10:1)
 - VOC detection: hazardous (formaldehyde) vs. neutral (alcohol vapor, cleaning agents) vs. wanted (odorants)
- Stability
 - Industrial applications: maintenance interval < 6 months
 - Public buildings: annual or bi-annual tests (if that)
 - Private homes: 10 years lifetime w/o regular maintenance?

Gas measurement systems – more than sensors

[MT

Hardware platform PuMaH for exact temperature control and large dynamic range data acquisition - Pulse-width-modulated Measuring and Heating Unit

- Heater temperature control Heater resistor $R_H(T)$ controlled for exact temperature control of (micro-)hotplates
- Sensor resistance read-out Gas sensitive layer: R_s(gas)
 - − <u>Closed-loop control mode</u>
 → constant voltage drop across R_S
 - <u>Temperature compensation mode</u>
 → large dynamic range of 26 bits
- Software controlled
- 16 bit PWM outputs used to apply signals to R_H and R_S
- now commercialized "OdorChecker" by 3S GmbH

Th. Conrad et al., IEEE Sensors Conference 2005

Gas measurement systems – more than sensors Temperature Cycled Operation (TCO) – software

Gas measurement systems – more than sensors Temperature Cycled Operation (TCO) – software

Evaluation of sensor data based on temperature cycling (example) → Virtual multisensor

Characteristic features of the curve shapes (i.e. *slope at the end of the high temperature phase* and *curvature during the low temperature phase*) are evaluated, to discriminate between different gases in several steps.

Note: the decision tree reflects the chemical composition of the solvents starting with the alkane pentane and the aromatic benzene (both pure CH-compounds), then the alcohol (R-COH) and finally the three ether compounds (R1-O-R2). This indicates that an expansion might be possible to classify many different molecules.

Gas measurement systems – more than sensors Temperature Cycled Operation – system design

Many possibilities for optimization:

- Sensor selection
- Operating mode
- Data acquisition
- Signal preprocessing
- Feature extraction
- Separation
- Classification

...and **always** testing under real application conditions (field testing)!

Calibration: novel gas mixing system for VOC testing down to sub ppb-level

Novel gas mixing system: results of reference measurement (zero air)

compound	CAS no	c [µg/m³]	c [ppb]
benzene	71-43-2	0.17	0.053
toluene	108-88-3	0.06	0.016
chlorobenzene	108-90-7	0.26	0.056
camphene	79-92-5	0.29	0.052
benzaldehyde	100-52-7	0.2	0.046
phenol	108-95-2	0.3	0.06
benzonitrite	100-47-0	0.61	0.144
octanal	124-13-0	0.1	0.019
benzyl alcohol	100-51-6	0.19	0.043
acetophenone	98-86-2	0.62	0.126
naphthalene	91-20-3	0.24	0.046
bicyclol[2.2.1]-	465-30-5	16.2	2.6
heptane,2-chloro-			
2,3,3-trimethyl			
TVOC		24.3	
Gas Sensors for Indoor Air Quality Monitoring – EuNetAir-Meeting – Copenhagen, Oct. 3-4, 2013 Slide 12			

Novel gas mixing system: results of first sensor tests

mnt-era.net

MNT-ERA.net project VOC-IDS

- Volatile Organic Compound Indoor Discrimination Sensor
- Scenario specific detection of hazardous VOC
- Integration of sensor system into KNX building automation networks

WP9: Project coordination (incl. oint IPR strategy, input to standard zation, dissemination) - LMT

VOC-IDS: ppb-level detection of VOCs against background gases?

Similar requirements: Fire detection in coal mines

- CO/C_2H_4 mixtures at 10 ppm/100 ppb respectively
- Background: up to 1% methane + interfering gases: r.h., CO, H₂, NO₂ etc.

Field test: correlation with existing sensors shown, stability needs to be improved

Novel sensor materials and transducer principles

- Nanotechnology for improved gas sensitive layers
- Novel transducer principles
 - Gas ionization (can be electronically controlled!)
 - GasFETs commercially available

SiC Gas-sensitive Field Effect Sensors (Linköping U, SenSiC)

- high temperature operation
- allows temperature cycled operation as for MOS
- (nano-)porous platinum and iridium gate materials

SiC GasFETs (Linköping U, SenSiC): high sensitivity

Sensor reaction to 2 ppb benzene

System integration: temperature and gate bias variation for SiC-GasFETs

• Electrical Impedance Spectroscopy yields similar improvement in selectivity as Temperature Cycled Operation (but time scale is completely different)

A. Schütze et al.: Improving MOS Virtual Multisensor Systems by Combining Temperature Cycled Operation with Impedance Spectroscopy, ISOEN 2011

Sensor self-monitoring with combination of TCO and EIS

Low cost EIS hardware realization: general approach

- Implementation using an FPGA (field programmable gate array)
- MLS signal refined with variable amplification using dedicated circuit
- Data acquisition using high speed ADC (sample rate 200 MHz)

Novel developments

MOS-IR measurement system:

- •Gas filled chamber (9 cm length)
- •MOS gas sensor (MICS 5131, e2v)
- Transmission: Thermopile (HIS A21 F4.26, Heimann Sensors)
- Ambient condition monitoring (p, r.h./T)
- Electronics controlled by a microcontroller
- Configuration settings set by a GUI (LabVIEW)
- Data evaluation offline using Matlab

K. Kühn et al.: Investigations on a MOX Gas Sensor as an Infrared Source for an IR-based Gas Sensing System, IMCS 2012

25

Kühn et al.: IMCS 2012

K.

MOS signal: Raw data DC resistance \rightarrow Shape of the response curve from temperature cycle

val. electrical conductance (a.u. Normalized electrical conductance (a.u.) 1.05 -■- CO (25, 75, 125 ppm) -●- C₂H₄ (20, 70, 120 ppm) 900 -1.00 800 0.95 700 0.90 600 0.15 500 0.10 400 0.05 Max. cyc. 300 0.00 0 500 1,000 1,500 2,000 2 0 1 Time (s) Time in temperature cycle (s)

Transmission signal:

Raw signal (thermopile) \rightarrow DFT analysis of raw data (90 ON/OFF cycles) \rightarrow |Y(f=f_A)|²(c)

Transmission signal, $f_A = 6$ Hz square wave mod. of the MOS gas sensor (MICS 5131, SGX)

- Indoor applications are of increasing interest, especially for improving energy efficiency and health
- Gas measurement systems are more than just sensors
- Multifunctional, intelligent multisensor systems can address emerging applications
- Application specific development still required
- Field testing is an absolute must for any chemical sensor system
 Field tests of VOC-IDS sensor systems are starting now
- Chemical sensor systems can become ubiquitous in modern building environments and a key to Indoor Air Quality

Thank you for your attention.

